TERPENOIDS OF PLANTS OF THE Ferula GENUS.

I. NATURAL CAROTANE DERIVATIVES

A. I. Saidkhodzhaev and A. U. Mamatkhanov

UDC 547.983:582.89

This review, generalizing information up to 1993, is devoted to the chemistry and spectral properties of natural carotane compounds.

Since 1970, a study of the chemical composition of various plants of the *Ferula* genus growing on the territory of Uzbekistan and adjacent republics been conducted in the Institute of the Chemistry of Plant Substances of the Republic of Uzbekistan Academy of Sciences. Problems of the systematic investigation of the terpenoids of *Ferula* plants have been solved, methods have been developed for their isolation and separation, their structures and stereochemistries have been determined, new drugs have been created from them, and attempts have been made to answer a number of questions connected with the biosynthesis of the terpenoids and with the chemotaxonomy of the *Ferula* genus.

Up to now, more than 50 species of the *Ferula* genus have been subjected to chemical study, and more than 250 terpenoids have been isolated from them. We were the first to show that plants of the *Ferula* genus contain, in addition to terpenoid coumarins and sesquiterpene lactones, a new group of natural compounds characteristic for this genus — esters of terpenoid alcohols with aromatic and aliphatic acids.

The structures and stereochemistries of about 100 new terpenoids belonging to the acyclo-, monocyclo-, and bicyclofarnesane, germacrane, humulane, guaiane, carotane, himachalane, and camphane types have been established. Terpenoids with carotane, humulane, and himachalane skeletons have been isolated form the Uzbekistan flora for the first time.

We have studied the dynamics of the accumulation of terpenoids in each organ of Ferula plants as functions of the growth site and of the vegetation period. The results of these investigations have enabled us to select the period and site of the growth of a plant in the optimum manner, to isolate the maximum number of terpenoids, and to attempt to reveal the laws of their accumulation in the organs of the plant. It has been found that, with a variation in the ecological—geographical conditions, the terpenoids in plants change more rapidly than the morphological characteristics of the plants. Consequently, one and the same plant species may contain different terpenoids under different growth conditions.

The present review is devoted to one of the most widespread types of giant fennel (Ferula) terpenoids — derivatives of carotane (daucane).

Carotane derivatives form a new group of natural compounds the majority of which have been detected and studied during the last two decades. Their structure is based on the carbon skeleton of a bicyclic sesquiterpene — 4-isopropyl-1,8-dimethylbicyclo[0.3.5]decane (1), which has acquired the name of "carotane" or "daucane." Both terms were formed from the name of the plant *Dauca carota*, components of the essential oil of which — the alcohols carotol (2) and daucol (3) — were the first representatives of this class of compounds.

METHODS OF ISOLATING AND SEPARATING CAROTANES

More than 100 natural carotane derivatives have been described in the literature (Table 1). It must be mentioned that compounds of this type are characteristic mainly of plants of the Apiaceae family, only a few cases of their isolation from other sources being known.

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (3712) 89 14 75. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 767-780, November-December, 1995. Original article submitted July 4, 1994.

TABLE 1. Natural Carotane Derivatives

TABLE 1. Natural Carolane Derivatives			
Compound, composition, mp, $[\alpha]_D$	Producer	Literature	
I. tran-Carotane Derivatives			
1. Dauca-8(14),11(13)-dien-9-ol C ₁₅ H ₂₄ O	Fokienia hodgisii	1, 2	
2. Dauc-11-ene-9-ol C ₁₅ H ₂₄ O	Fokienia hodgisii	1, 2	
3. Jaeschkeanadiol (ferutinol, chimgandiol)	Ferula jaeschkeana,		
C ₁₅ H ₂₆ O ₂ , 91-92°C, +38.8°	F. tenuisecta, F. tschimganica	3-6	
4. Angeloyljaschkeanadiol C ₂₀ H ₂₂ O ₃	F. elaechytrys	7	
5. Teferidin C ₂₂ H ₃₀ O ₃	F. tenuisecta	8	
6. Ferutinin C ₂₂ H ₃₀ O ₄ , 121-122°, +66.1°	F. tenuisecta	4, 9	
7. Salicyloyljaeschkeanadiol $C_{22}H_{30}O_4$	F. elaechytrys	7	
8. Ferutidin C ₂₃ H ₃₂ O ₄ , 102-103°C, +103.5°	F. ovina	10	
9. Akiferidin C ₂₂ H ₂₂ O ₅ , 53-54°C, +28.5°	F. akitschkensis	11	
10. Ferutin C ₂₃ H ₃₂ O ₅ , 130-131°C, +101.8°	F. tenuisecta	4, 12	
11. Teferin C ₂₃ H ₃₂ O ₅ , 78-80°C, +86.5°	F. tenuisecta	13	
12. Akiferin, C ₂₄ H ₃₄ O ₅ , 102-103°C, +69.1°	F. akitschkensis	14	
13. Palliferidin, C ₂₅ H ₃₆ O ₆ , 115-116°C, +71.4°	F. pallida	15	
14. trans-Cinnamoyljaeschkeanadiol C ₂₄ H ₃₂ O ₃	F. rigidula	16	
15. p-Coumaroyljaeschkeanadiol C ₂₄ H ₃₂ O ₄	F. rigidula	16	
16. p-Acetoxycoumaryljaeschkeanadiol C ₂₆ H ₃₄ O ₆	F. rigidula	16	
17. Isovaleroylepoxyjaschkeanadiol C ₂₀ H ₃₄ O ₄ , 86-88°C	F. linkii	17	
18. p-Hydroxybenzoylepoxyjaeschkeanadiol (tenuferidin) $C_{22}H_{30}O_5$,			
134-135°C, +75°	F. linkii, F. tenuisecta	17-19	
19. p-MethoxybenzoylepoxyjaeschkeanadiolC ₂₃ H ₃₂ O ₅ , 145-148°C	F. lancerottensis	17	
20. Vanilloylepoxyjaeschkeanadiol C ₂₃ H ₃₂ O ₆ , 104-105°C, +11.2°	F. linkii, F. tenuisecta	17-19	
21. Isovanilloylepoxyjaeschkeanadiol C ₂₃ H ₃₂ O ₆ , 176-178°C, +134.6°	F. tenuisecta	18, 19	
22. Veratroylepoxyjaeschkeanadiol C ₂₄ H ₃₄ O ₆ , 187-190°C	F. linkii	17	
23. trans-Cinnamoylepoxyjaeschkeanadiol C ₂₃ H ₃₂ O ₄	F. rigidula	16	
24. Lapidin C ₂₀ H ₃₀ O ₄ , 80-81°C, +166.1°	F. lapidosa	20, 21	
25. Vanilloyllapidol C ₂₃ H ₃₀ O ₆ , 176-178°C	F. latypinna	22	
26. p-Hydroxybenzoyllapidol C ₂₂ H ₂₈ O ₅	F. sinaica	23	
27. Palliferin C ₂₅ H ₃₄ O ₇ , 133-134°C, +201°	F. pallida	24	
28. Palliferidin C ₂₄ H ₃₀ O ₇	F. pallida	. 24	
29. Ferugin C ₂₂ H ₃₀ O ₅ , 140°C, +15°	F. jaeschkeana	25, 26	
30. Feruginidin C ₂₂ H ₃₀ O ₅ , 130°C, +6°	F. jaeschkeana	25, 26	
31. 14-p-Anisoyloxydauca-4,8-diene C ₂₃ H ₃₀ O ₃	F. tingitana	27	
32. Feruone C ₁₅ H ₂₄ O ₃ , +1.5°	F. jaeschkeana	28	
33. Lancerodiol C ₁₅ H ₂₄ O ₃	F. lancerottensis	29	
34. p-Hydroxybenzoyllancerodiol $C_{22}H_{28}O_5$, 227-228°C	F. rigidula, F. lancerottensis	16, 29	
35. p -Methoxybenzoyllancerodiol $C_{23}H_{30}O_5$	F. lancerottensis	29	
36. Vanilloyllancerodiol C ₂₃ H ₃₀ O ₆	F. lancerottensis, F. rigidula	16, 30	
37. trans-Cinnamoyllancerodiol C ₂₄ H ₃₀ O ₄	F. rigidula	16	
38. p-Coumaroyllancerodiol $C_{24}H_{30}O_5$	F. rigidula	16	
39. 2β -Hydroxy- 6α - p -benzoyllancerodiol $C_{22}H_{28}O_6$	F. sinaica	23	
40. 6-Isovaleroylisolancerotriol C ₂₀ H ₃₄ O ₄ , 84-86°	F. linkii	31	
41. 6-Isovaleroylferutriol C ₂₀ H ₃₄ O ₄ , 54-56°C	F. linkii	31	
42. p-Hydroxybenzoylferutriol C ₂₂ H ₃₀ O ₅ , 74°C	F. jaeschkeana	28	
43. Jaeschferin C ₂₃ H ₃₂ O ₅ , +35°	F. jaeschkeana	32	
44. Akichenin C ₂₇ H ₃₆ O ₆ , 162-163°C, -8.3°	F. akitschkensis	33	

TABLE 1 (continued)

Compound, composition, mp, $[\alpha]_D$	Producer	Literature
45. Akiferidinin C ₂₇ H ₃₆ O ₇ , 66-67°C, +46°	F. akitschkensis	11
46. 2β-Hydroxy-6α-anisoyloxyjaeschkeanadiol C ₂₂ H ₃₂ O ₅ , +14°	F. sinaica	23
47. 2α -Acetoxy- 6α -benzoyloxyjaeschkeanadiol $C_{24}H_{32}O_5$	F. communis	34
48. 2α-Acetoxy-6α-p-hydroxybenzoyloxyjaeschkeanadiolC ₂₄ H ₃₂ O ₆ , +5.9°	F. communis	35
49. 2α-Acetoxy-6α-p-anisoyloxyjaeschkeanadiol C ₂₅ H ₃₄ O ₆	F. communis	34
50. Pallidin C ₂₅ H ₃₈ O ₅ , 79-80°C, -148.5°	F. pallida	36
51. 10-Acetyl-6-isovaleroylferulinkiol C ₂₂ H ₃₆ O ₅	F. linkii	28
52. 10-Hydroxy-6-angeloyljaeschkeanadiol C ₂₀ H ₃₂ O ₄ , -57.8°	F. communis	35
53. C ₂₃ H ₃₂ O ₅	F. communis	34
54. C ₂₇ H ₃₆ O ₅	F. communis	34
55. C ₂₅ H ₃₄ O ₆	F. communis	34
56. C ₂₅ H ₃₈ O ₆	F. communis	34
57. C ₂₉ H ₄₀ O ₇	F. communis	34
58. Lapiferol C ₁₅ H ₂₆ O ₄ , 112-114°C, +15.4°	F. latipinna, F. soongorica	22, 37
59. Lapiferin C ₂₂ H ₃₄ O ₆ , 137-138°C, -41.6°	F. lapidosa	38
50. C ₂₂ H ₃₆ O ₆ , 115-116°	F. linkii	28
61. 10-Acetyllapiferol C ₁₇ H ₂₈ O ₅ , 106-108°	F. linkii	28
$62. \text{ Isolancerotriol } C_{15}H_{26}O_3, +63^{\circ}$	F. sinaica	39
63. 4β ,9 β -Dihydroxy- 6α - p -hydroxybenzoyldauc- $8(14)$ -ene $C_{22}H_{32}O_5$,	1. Shared	3,
+21.9°	F. sinaica	23
64. 4β , 6α , 8β -Trihydroxy- 9α - p -hydroxybenzoyldaucane $C_{22}H_{32}O_6$, -15.4°	F. sinaica	23
	F. sinaica	23
65. 4β ,8 β ,9 α -Trihydroxy- 6α - p -hydroxybenzoyldaucane $C_{22}H_{32}O_6$, +15.8°	F. linkii	40
66. 6-Isovaleroylisolancerotetrol C ₂₀ H ₃₄ O ₄ , 84-86°C		
67. 6-Isovaleroylepoxylancerotetrol C ₂₀ H ₃₄ O ₆	F. linkii	40
68. Lapiferinin C ₂₆ H ₃₆ O ₈ , 157-158°C, +63°	F. lapidosa	41
59. Tingitanol C ₂₅ H ₃₈ O ₆	F. tingitana	42
70. Acetyltingitanol C ₂₇ H ₄₀ O ₇ , 141-143°C	F. tingitana	27
71. 2β , 6α -Diangeloyloxy- 4β -hydroxydauc-8-ene-10-one $C_{25}H_{36}O_6$	F. sinaica	23
72. C ₂₅ H ₃₄ O ₇ , 152-154°C	F. communis	34
73. C ₂₇ H ₃₆ O ₈	F. communis	34
74 . 6 $^$	F. communis	34
75. C ₂₈ H ₃₈ O ₉	F. communis	34
76. Lapidolin C ₂₄ H ₃₆ O ₈ , 187-189°C, +27.7°	F. lapidosa	43
77. Lapidolinin C ₂₆ H ₃₆ O ₉ , 163-164°C, +26.7°	F. lapidosa	44
78. Lapidolinin C ₂₈ H ₃₈ O ₁₀ , 182-183°C, +54.5°	F. lapidosa	43
79. Laserpitin C ₂₅ H ₃₈ O ₇ , 116-117°C, +118°	Laserpitium latifolium	45, 46
80. Monoangeloyllaserol C ₂₀ H ₃₂ O ₆ , 145-146°C, +105°	L. latifolium	47
81. Laserpitinol C ₂₅ H ₄₀ O ₇ , 138-139°C	L. latifolium	47
82. Isolaserpitin $C_{25}H_{38}O_7$, 159°C, -28°	L. latifolium	47
83. Deoxodehydrolaserpitin C ₂₅ H ₃₈ O ₆ , 59-60°C	L. latifolium	47
84. Acetyldeoxodehydrolaserpitin C ₂₇ H ₄₀ O ₇	L. latifolium	27
85. 6-Deangeloyl-6-isobutanoyllaserpitin C ₂₇ H ₃₆ O ₈	L. latifolium	27
86. 9 β -Hydroxy-7,8-epoxyjaeschkeanadiol $C_{15}H_{26}O_4$, +47°	F. jaeschkeana	48
87. C ₂₀ H ₂₆ O ₅ , 90°C, -466°	F. jaeschkeana	49
88. Hercenolactone (fastigiolide) C ₁₅ H ₂₀ O ₂ , -31°	Barbilophorallycopides,	50, 51
89. CAF — 603, C ₁₅ H ₂₆ O ₂ , 82-83°C	Ageratum gastugiatum	52
90. Pyrosal C ₁₅ H ₂₂ O ₄ , 145-147°C, +183°	Aspergillus oryzae	53
 ·	Rosa rugoza	

Compound, composition, mp, $[\alpha]_D$

Producer

Literature

II. cis-Carotane Derivatives

91. Carotol C ₁₅ H ₂₆ O, +30.4°	Daucus carota	54-62
92. Daucol C ₁₅ H ₂₆ O ₂ , 113-115°C -16.9°	D. carota	55-59
93. Vaginatin C ₂₀ H ₃₀ O ₄ , 77-78°C, -266.7°	Selenum vaginatum	29, 63-65
94. 10α-Cinnamoyl-1,2-dehydrocarotol C ₂₄ H ₃₀ O ₃ , -198°	F. linkii	66
95. 10α-Cinnamoylcarotol C ₂₄ H ₃₂ O ₃ , -77°	F. linkii	66
96. Fercomin C ₂₃ H ₃₀ O ₅ , 130-132°C	F. communis	67
97. Fercolide C ₂₃ H ₂₆ O ₆	F. communis	67
98. Angeloylfelikiol C ₂₀ H ₃₂ O ₄ , 106-108°C	F. linkii	31
99. Epoxyangeloylwebol C ₂₀ H ₂₈ O ₅ , 82-84°C	F. linkii	31
100. Angeloyiwebol C ₂₀ H ₂₈ O ₄	F. linkii	. 31
101. p-Methoxybenzoyllinkitriol C ₂₃ H ₃₄ O ₅	F. lancerottensis	29
102. Pallidin C ₂₅ H ₃₈ O ₇ , 109.5-110°C, -27.9°	F. pallida	68
103. Acetylcarotdiol C ₁₇ H ₂₈ O ₃	F. linkii	69
104. Veratroylcarotdiol C ₂₄ H ₃₄ O ₅	F. linkii	69
105. Angeloyllasidiol $C_{20}H_{32}O_3$	Lasianthus fruticosa	70
106. Carotane 1,4-oxide C ₁₅ H ₂₆ O	D. carota	71
107. Diangeloyltorosol C ₂₅ H ₃₆ O ₅	F. rigidula	16
108. 13-Vanilloyldaucol C ₂₂ H ₃₂ O ₆	F. rigidula	16

17. R = isovaleroyl

18. R = p-hydroxybenzoyl

19. R = p-anisoyl 20. R = vanilloyl

21. R = isovanilloyl

22. R = veratroyl

23. R = trans-cinnamoyl

24-28

24. R = angeloyl

25. R = vanilloyl

26. R = p-hydroxybenzoyl

27. R = 3,4,5-trimethoxybenzoyl

28. R = 3-methoxy-4,5-

methylenedioxybenzoyl

3. R = H

4. R = angeloyl

5. R = benzoyl

6. R = p-hydroxybenzoyl

7. R = salicyloyl

8. R = p-anisoy!

9. R = 3.4-dihydroxybenzoyl

10. R = isovanilloyl

11. R = vanilloyl

12. R = veratroyl

13. R = 3,4,5-trimethoxybenzoyl

14. R = trans-cinnamoyl

15. R = p-coumaroyl

16. R = p-acetoxycoumaroyl

29. R = p-hydroxybenzoyl

30. R = p-hydroxybenzoyl

31. R = p-anisoyl

33.
$$R = H$$

34. R = p-hydroxybenzoyl

35. R = p-anisoyl

36. R = vanilloyl

37. R = trans-cinnamoyl

38. R = p-coumaroyl

39.
$$R = p$$
-hydroxybenzoyl

40. R = isovaleroyl

41. R = isovaleroyl

42. R = p-hydroxybenzoyl

43. $R_1 = H$, $R_2 = \text{vanilloyl}$ 44. $R_1 = \text{angeloyl}$, $R_2 = p$ -hydroxybenzoyl 45. $R_1 = \text{angeloyl}$, $R_2 = 3$,4-dihydroxybenzoyl

46. $R_1 = H$, $R_2 = p$ -anisoyl

50. $R_1 = R_2 = angeloyl$ 51. $R_1 = isovaleroyl$, $R_2 = acetyl$

52. $R_1 = \text{angeloy!}, R_2 = H$

53. $R_1 = p$ -anisoyl, $R_2 = H$ 54. $R_1 = b$ enzoyl, $R_2 = a$ ngeloyl 55. $R_1 = p$ -anisoyl, $R_2 = a$ cetyl

56. $R_1 = p$ -anisoyl, $R_2 = angeloyl$ 57. $R_1 = veratroyl$, $R_2 = angeloyl$

47. $R_1 = acetyl$, $R_2 = benzoyl$ 48. $R_1 = acetyl$, $R_2 = p$ -hydroxybenzoyl 49. $R_1 = acetyl$, $R_2 = p$ -anisoyl

58. $R_1 = R_2 = H$

59. $R_1 = \text{angeloyl}, R_2 = \text{acetyl}$

60. R_1 = isovaleroyl, R_2 = acetyl 61. R_1 = H, R_2 = acetyl

63.
$$R = p$$
-hydroxybenzoyl

64. $R_1 = H$, $R_2 = p$ -hydroxybenzoyl 65. $R_1 = p$ -hydroxybenzoyl, $R_2 = H$

66. R = isovaleroyl

67. R = isovaleroyl

57

68. $R_1 = acetyl, R_2 = veratroyl$

69. $R_1 = H$, $R_2 = R_3 = angeloyl$ 70. $R_1 = acetyl$, $R_2 = R_3 = angeloyl$

71. $R_1 = R_2 = angeloyi$

$$R, C \rightarrow R_9$$
 $HC \rightarrow H \rightarrow R_2$
 $OR_2 \rightarrow 72-73$

72. R_1 = acetyl, R_2 = p-anisoyl, R_3 = H 73. R_1 = R_3 = acetyl, R_2 = p-anisoyl

74. $R_1 = R_3 = acetyl$, $R_2 = p$ -anisoyl 75. $R_1 = R_3 = acetyl$, $R_2 = veratroyl$

76.
$$R_1=R_3=$$
 acetyl, $R_2=$ angeloyl
77. $R_1=$ acetyl, $R_2=$ veratroyl, $R_3=$ H
78. $R_1=$ $R_3=$ acetyl, $R_2=$ veratroyl

79.
$$R_1 = R_2 = \text{angeloyl}$$

80. $R_1 = H$, $R_2 = \text{angeloyl}$

81. $R_1 = R_2 = angeloyl$

82.
$$R_1 = R_2 = angeloyl$$

83.
$$R_1 = H$$
, $R_2 = R_3 = angeloyl$
84. $R_1 = acetyl$, $R_2 = R_3 = angeloyl$

85. $R_1 = \text{isobutanoyl},$ $R_2 = \text{angeloyl}$

87.
$$R = angeloyl$$

96. R = p-anisoy!

97.
$$R = p$$
-anisoyl

98. R = angeloyl

99. R = epoxyangeloyl 100. R = angeloyl

101. R = p-anisoyl

103. R = acetyl 104. R = veratroyl

105.
$$R = angeloyl$$

107.
$$R_1 = R_2 = angeloyl$$

Conventional names

Acetyl-
$$CH_3$$
: $C=C$

Epoxyangeloyl .- CH_3 : $C-C-C=O$

Epoxyangeloyl .- CH_3 : $C-C-C=O$

Benzoyl .- CH_3 : CH_3 :

Carotanes are particularly widespread in plants of the genus Ferula, which, by their qualitative and quantitative compositions, are the most promising sources of these compounds. It is only quite rarely that carotane derivatives are found in plants in the form of free alcohols. The majority of them are in the form of esters with aromatic and aliphatic acids.

The general scheme for isolating this class of compounds does not differ basically from the methods for isolating other classes of water-insoluble natural compounds. The only condition is the use of methods not affecting the ester bond in order to prevent hydrolysis during isolation.

The comminuted raw material is extracted with a suitable organic solvent: methanol, acetone, chloroform, or ethanol. The extract is treated with solvents of different polarities — from hexane to water — and then the terpenoid-containing fractions are chromatographed on column of neutral alumina or silica gel. In order to prevent various rearrangements and cyclizations, labile substances are chromatographed on silica gel impregnated with silver nitrate. It must be mentioned that only sesquiterpene alcohols and acids were isolated at first from many *Ferula* species in which esters were later detected [5], this being possibly connected with the use of alkaline solutions in the isolation process.

For separating the neutral and the phenolic fractions of sesquiterpene esters, use is made of the capacity of phenols for forming salts — phenolates. The general scheme of separation appears as follows: the ester-containing fractions are treated with a 2-5% solution of sodium carbonate to eliminate free organic acids. Then the phenolic components are extracted from the residue with a 0.5-1.0% solution of sodium hydroxide, and the neutral substances remain in the mother liquor. The alkaline solution is acidified, and the substances are extracted with a suitable solvent and, after elimination of the solvent, are separated on a column of adsorbent [8-12].

Carotane esters are also isolated by extracting the raw material with various solvents: petroleum ether, chloroform and ethanol or gasoline, benzene, and methanol, successively. Each of the fractions obtained is separated on columns of silica gel or Sephadex LH-20 with elution by various solvent mixtures [26, 29].

The plants are placed in a Soxhlet apparatus and extracted with benzene. The concentrated benzene extract is added to a column of silica gel or Sephadex LH-20 [35].

The raw material is extracted with gasoline in a Soxhlet apparatus, and the extract obtained is separated on Sephadex LH-20 [42].

Analysis of the methods of isolating esters from plants that have been described in the literature permit the conclusion that the most suitable is one based on separating the total extractive substances into neutral, acid, and phenolic fractions, since this method provides the possibility of predicting the natures of the substances isolated from the fractions [8-12].

CHEMICAL PROPERTIES AND METHODS OF ESTABLISHING THE STRUCTURES AND STEREOCHEMISTRIES OF CAROTANES

The study of the structures of the first representatives of the carotanes — carotol (91), daucol (92), and laserpitin (93) — took many years because of the formation of a naphthalene derivative — daucalene (109) — on their dehydrogenation. It was then found that, in addition to the main component, daucalene, dehydrogenation also formed azulene derivatives [60]. This fact showed that carotane was based on a carbon skeleton consisting of five- and seven-membered rings.

The presence of the seven-membered ring in carotane was shown by two independent methods based on chemical transformations.

The esters contain residues of both aliphatic and aromatic organic acids. The following aliphatic acids have been identified: acetic, angelic, valeric, isovaleric, and epoxyangelic. The aromatic acids are more diverse, numbering more than ten: benzoic salicylic, p-hydroxybenzoic, p-methoxybenzoic, 3,4-dihydroxybenzoic, vanillic, isovanillic, veratric, 3,4,5-trihydroxybenzoic, 3,4,5-trimethoxybenzoic, 5-methoxy-3,4-methylenedioxybenzoic, p-hydroxycinnamic, and p-coumaric.

The wide structural diversity of natural carotane compounds is due to the conformation of the terpenoid bicycle (cisor trans-linkage) and, in considerable degree, to the set of functional groups, the possibilities of their attachment in various positions of the sesquiterpene skeleton, and their mutual orientation.

Definite regularities are observed in the positions of the substituents in the carbon skeleton of carotane which are fully explicable on the basis of the derivation of these compounds from farnesol. Since the double bond in farnesol itself is located at C_3 - C_4 , in the majority of carotanes the double bonds an the epoxide and tertiary hydroxy groups occupy these positions in the carbon atoms of the isoprenyl units.

Characteristic for the majority of carotanes is the presence of substituting groups at C_8 - C_9 , which may be represented by a double bond (ferutinol (3)), an epoxy ring (tenuferol (110)), or two oxygen-containing functions (laserpitinol (81)). The latter are most probably the result of the opening of an epoxide ring. Then the secondary hydroxy group may be oxidized in nature to a ketone (111) or be acylated (24). The tertiary hydroxy group is capable of forming an epoxide ring (92) [71] and, by being split out, may produce a new exomethylene group (40) [39] or an olefinic bond (33) [29].

According to their type of linkage, carotanes are subdivided into derivatives of *cis*-carotane and of *trans*-carotane. In the majority of the *trans*-carotane derivatives there is a β -oriented tertiary hydroxy group at C_4 and an α -oriented secondary hydroxy group at C_6 . *cis*-Carotane derivatives are characterized by the presence of a β -oriented tertiary hydroxy group at C_5 (vaginatin (93)) or a β -oriented oxide ring at C_5 - C_8 (daucol (92)). In the case of *cis*-carotane compounds not having these groups, the presence of a double bond at C_4 - C_5 is unfailing (angeloylwebiol (100)). The relationship that we have discovered has been traced in all natural carotane compounds and no exceptions to it have so far been reported.

Carotane structures are studied mainly by the chemical methods developed for terpene compounds, in combination with modern instrumental methods.

Analysis of the proposed structures of carotane alcohols isolated from plants of the *Ferula* genus has revealed the following correlations between them, and these have been used in proving their structures and stereochemistries. The Huang-Minlon reduction of tetrahydrolapidin (112) gave dihydroferutinol (dihydrojaeschkeanadiol (113)), the structure and stereochemistry of which had been showed earlier [3], and thereby established the absolute configuration of lapidin (24) [20].

The sesquiterpene alcohol pallinol (114), a component of the ester pallinin (50) [36], proved to be dihydrolapidol, the structure of which was proved by two methods: a) by reducing lapidol with sodium tetrahydroborate in methanol, which led to two dihydrolapidols (114, 115) from which pallinol (114) was isolated chromatographically; and b) by the oxidation of pallinol with chromic anhydride in pyridine, which gave a monoketone of pallinol, identical with lapidol (111) [20]. In this way the interrelationship between ferutinol (jaeschkeanadiol (3)), lapidol (111), and pallinol (114) was shown.

The structure and stereochemistry of lapiferol (116) were shown by its formation from pallinol on epoxidation with perphthalic acid [37].

The epoxidation of ferutinin (6), ferutin (10), and teferin (11) gave the corresponding epoxy derivatives (18, 20, 21), which were subsequently isolated from natural sources [18].

The positions of the acyl residues in mono- and diesters with the same acid residues have been determined by comparing the chemical shifts (CSs) of the signals of the gem-acyl and gem-hydroxy protons in the PMR spectra of the initial compounds and their hydrolysis products [19].

In the case of mixed di- and triesters, the positions of the acid residues have been established by their stepwise hydrolysis under mild conditions. In all the carotane di- and triesters the acid residue present at C_6 is split out first, and this fact has been used to prove the structures of the esters [32, 38, 43, 44].

Analysis of the PMR spectra of *trans*-carotane esters has shown that, on passing from alcohols to esters, in addition to changes in the CSs of gem-hydroxylic protons, the CSs of the signals of C-methyl groups located vicinally to an ester group or spatially close to it also change.

We have directed attention to the changes in the CSs of the signals of secondary methyl groups in isopropyl radicals in the spectra of esters of carotane alcohols — ferutinol (3), tenuferol (110), lapidol (111), pallinol (114), lapiferol (116), akichenol (117), lapiferinol (118), and lapidolinol (119).

On comparing the PMR spectra of esters of these alcohols we noted that the CSs of the signals of secondary methyl groups are influenced differently by the nature of the ester radical at C_6 : in the spectra of the sesquiteperne alcohols themselves and their acetyl and angeloyl derivatives at the C_6 -OH the signals of an isopropyl group are observed in the form of a six-proton doublet or of two three-proton doublets with a difference in the CSs ($\Delta\delta$) of the methyl groups of 0.04-0.06 ppm. When an aromatic acid residue is present at C_6 the difference in the CSs of the methyl groups increases ($\Delta\delta$ 0.08-0.2 ppm). This relationship is observed in all *trans*-carotane esters and their derivatives.

As is known, in all carotane esters of the *trans*-carotane type found in plants of the *Ferula* genus there is an α -oriented ester group at C_6 and the change in the CSs of the signals of the isopropyl group may be caused by the anisotropic influence of the ester carbonyl or the benzene nucleus of an aromatic acid. The fact that such a pattern is observed only in esters with aromatic acids permits a conclusion in favor of the anisotropic influence of a benzene ring.

The relationship found between the nature of the acyloxy group and the CS of the isopropyl radical enables us to determine the positions of the acyl groups in mixed di- and triesters of the carotane type without stepwise hydrolysis [19].

For proving the structures of carotane compounds, ever wider use is being made of ¹³C NMR spectroscopy [7, 16, 23], but up to the present no relationship has been found between the parameters of ¹³C NMR spectra and the structures and stereochemistries of carotane compounds.

REFERENCES

- 1. W. P. Korthals, D. Merkel, and M. Muhlstadt, Liebigs Ann. Chem., 745, 31 (1971).
- 2. W. P. Korthals, D. Merkel, and M. Muhlstadt, Liebigs Ann. Chem., 745, 39 (1971).
- 3. M. C. Sriraman, B. A. Nagasampagi, K. S. Pandey, and S. Dev, Tetrahedron, 29, No. 7, 985 (1973).
- 4. A. I. Saikhodzhaev and G. K. Nikonov, Khim. Prir. Soedin., 166 (1974).
- 5. N. P. Kir'yalov, in: Plants of the Umbelliferae Family as Sources of Biochemically Active Substances [in Russian], Trudy BIN AN SSSR, Ser. 4, 129 (1968).
- 6. S. V. Serkerov, in: Abstracts of Lectures at the 1st Congress of Azerbaidzhan Pharmacists [in Russian], Baku (1976), p. 5.
- 7. M. Miski, A. Ulubelen, and T. J. Mabry, Phytochemistry, 22, 2231 (1983).
- 8. A. I. Saidkhodzhaev and G. K. Nikonov, Khim. Prir. Soedin., 105 (1976).
- 9. A. I. Saidkhodzhaev and G. K. Nikonov, Khim. Prir. Soedin., 28 (1973).
- A. I. Saidkhodzhaev and G. K. Nikonov, Khim. Prir. Soedin., 525 (1974).
- 11. A. Yu. Kushmuradov, A. Sh. Kadyrov, A. I. Saidkhodzhaev, and V. M. Malikov, Khim. Prir. Soedin., 725 (1978).
- 12. A. I. Saidkhodzhaev and G. K. Nikonov, Khim. Prir. Soedin., 559 (1972).
- 13. T. Kh. Khasanov, A. I. Saidkhodzhaev, and G. K. Nikonov, Khim. Prir. Soedin., 528 (1974).
- 14. A. Sh. Kadyrov, A. I. Saidkhodzhaev, G. K. Nikonov, and U. Rakhmankulov, Khim. Prir. Soedin., 284 (1977).
- 15. A. Yu. Kushmuradov, A. I. Saidkhodzhaev, and A. Sh. Kadyrov, Khim. Prir. Soedin., 400 (1981).
- 16. M. Miski and J. Jakupovic, Phytochemistry, 29, 173 (1990).
- 17. J. G. Diaz, B. M. Fraga, A. G. Gonzalez, P. Gonzalez, and M. G. Hernandez, Phytochemistry, 23, 2541 (1984).
- 18. A. I. Saidkhodzhaev, Khim. Prir. Soedin., 70 (1978).
- 19. A. I. Saidkhodzhaev, Author's abstract of doctoral dissertation [in Russian] Tashkent (1984).
- 20. L. A. Golovina and A. I. Saidkhodzhaev, Khim. Prir. Soedin., 318 (1981).
- 21. A. I. Saidkhodjaev [Saidkhodzhaev], L. A. Golovina, and V. M. Malikov, in: 9th Conference on Isoprenoids. Abstracts of Papers, Prague (1981), p. 74.
- 22. A. G. Gonzalez, J. Bermejo, A. G. Diaz, and L. Araucibia, J. Nat. Prod., 51, No. 6, 1140 (1988).
- 23. Ahmed A. Ahmed, Phytochemistry, 30, 1207 (1991).
- 24. S. N. Garg, S. K. Agarwal, V. P. Manojan, and S. N. Pastogi, J. Nat. Prod., 50, No. 2, 253 (1987).
- 25. A. Yu. Kushmuradov, A. I. Saidkhodzhaev, and A. Sh. Kadyrov, Khim. Prir. Soedin., 523 (1981).
- 26. B. M. Fraga, M. G. Hernandez, J. G. Diaz, A. G. Gonzalez, and P. Gonzalez, Phytochemistry, 25, 2883 (1986).
- 27. M. Miski and T. J. Mabry, J. Nat. Prod., 49, No. 4, 657 (1986).
- 28. S. N. Garg and S. K. Agarwal, Planta Med., 53, No. 4, 341 (1987).
- 29. B. M. Fraga, A. G. Gonzalez, P. Gonzalez, M. G. Hernandez, and C. L. Larruga, Phytochemistry, 24, 501 (1985).

- 30. M. Miski, J. Mabry, and O. Saya, J. Nat. Prod., 50, No. 5, 829 (1987).
- 31. J. G. Diaz, B. M. Fraga, A. G. Gonzalez, M. G. Hernandez, and A. Perales, Phytochemistry, 25, 1161 (1986).
- 32. K. B. Bizhanova, A. I. Saidkhodzhaev, and V. M. Malikov, Khim. Prir. Soedin., 127 (1980).
- 33. A. Sh. Kadyrov, A. I. Saidkhodzhaev, and G. K. Nikonov, Khim. Prir. Soedin., 102 (1976).
- 34. M. Miski and T. J. Mabry, Phytochemistry, 24, 1735 (1985).
- 35. D. Lamnaouer, N. T. Martin, D. Molho, and B. Bodo, Phytochemistry, 28, 2711 (1989).
- 36. A. Yu. Kushmuradov, A. I. Saidkhodzhaev, and V. M. Malikov, Khim. Prir. Soedin., 53 (1986).
- 37. L. A. Golovina, A. I. Saidkhodzhaev, V. M. Malikov, and M. G. Pimenov, Khim. Prir. Soedin., 763 (1987).
- 38. L. A. Golovina, A. I. Saidkhodzhaev, N. D. Abdullaev, V. M. Malikov, and M. R. Yagudaev, Khim. Prir. Soedin., 296 (1983).
- 39. Ahmed A. Ahmed, J. Nat. Prod., 53, No. 2, 483 (1990).
- 40. B. M. Fraga, M. G. Hernandez, J. G. Diaz, A. G. Gonzalez, and P. Gonzalez, Phytochemistry, 25, 2883 (1986).
- 41. L. A. Golovina, A. I. Saidkhodzhaev, and V. M. Malikov, Khim. Prir. Soedin., 301 (1983).
- 42. M. Miski, A. Ulubelen, T. J. Mabry, W. H. Watson, J. Vickovic, and M. Holub, Tetrahedron, No. 40, 5197 (1984).
- 43. L. A. Golovina, A. I. Saidkhodzhaev, V. M. Malikov, and S. Melibaev, Khim. Prir. Soedin., 787 (1982).
- 44. L. A. Golovina, A. I. Saidkhodzhaev, and V. M. Malikov, Khim. Prir. Soedin., 713 (1985).
- 45. M. Holub, Z. Samek, V. Herout, and F. Sorm, Coll. Czech. Chem. Comm., 32, No. 2, 591 (1967).
- 46. A. Linea, C. Novak, L. Vesela, and V. Kupcik, Coll. Czech. Chem. Comm., 32, No. 9, 3437 (1967).
- 47. M. Holub, Z. Samek, and F. Sorm, Monatsh. Chem., 98, No. 3, 1138 (1967).
- 48. P. Moldt, U. W. Smitt, and S. B. Christensen, J. Nat. Prod., 50, No. 5, 974 (1987).
- 49. S. N. Garg and S. K. Agarval, J. Nat. Prod., 51, No. 4, 771 (1988).
- 50. S. N. Garg, L. H. Misra, S. K. Agarval, V. P. Manajan, and S. N. Pastogi, Phytochemistry, 26, 449 (1987).
- 51. S. Huneck, A. F. Cameron, J. D. Connolly, M. Melaren, and D. S. Rucroff, Tetrahedron Lett., No. 38, 3959 (1982).
- 52. F. Bohlmann, G. W. Ludwig, J. Jakupovic, R. M. King, and H. Robinson, Phytochemistry, 22, 983 (1983).
- N. Watanabe, M. Yamaguchi, T. Misutani, H. Kondoh, S. Omura, K. Handda, and K. Kushida, J. Nat. Prod., 53, No. 5, 1176 (1990).
- 54. Y. Hashiboko, S. Tahara, and Y. Misatani, Phytochemistry, 28, 425 (1989).
- 55. Y. Asahino and T. Tsukamito, J. Pharm. Soc. Jpn., 525, 261 (1925).
- 56. V. Sykora, L. Novotny, M. Holub, V. Herout, and F. Sorm, Coll. Czech. Chem. Comm., 26, 788 (1961).
- 57. F. Sorm and L. Urbanek, Coll. Czech. Chem. Comm., 13, No. 1, 49 (1948).
- 58. F. Sorm and L. Urbanek, Coll. Czech. Chem. Comm., 13, No. 2, 420 (1948).
- 59. V. Sykora, L. Novotny, and F. Sorm, Tetrahedron Lett., No. 14, 24 (1959).
- 60. L. Chuirdoglu and M. Descamps, Chem. Ind., No. 44, 1377 (1954).
- 61. V. Herout, M. Holub, L. Novotny, F. Sorm, and V. Sykora, Chem. Ind., No. 23, 662 (1960).
- 62. L. Chuirdoglu and M. Descamps, Tetrahedron, 8, 271 (1960).
- 63. L. H. Zalkow, E. Y. Eisenbraun, and J. N. Sholery, J. Org. Chem., 26, No. 4, 981 (1961).
- 64. C. K. Mesta, S. K. Paknikar, and S. C. Bhattacharyya, Chem. Comm., 584 (1968).
- 65. K. Rajendran, S. K. Paknikar, C. K. Trivedi, and S. C. Bhattacharyya, Ind. J. Chem., 16B, No. 1, 4 (1978).
- 66. Z. F. Mahmoud, N. A. Abdel Salam, T. M. Sarg, and F. Bohlmann, Phytochemistry, 20, 735 (1981).
- 67. O. Hofer, M. Widhaluu, and H. Creyer, Monatsh. Chem., 115, 1207 (1984).
- 68. M. Miski and T. J. Mabry, Phytochemistry, 25, 1673 (1986).
- 69. A. Yu. Kushmuradov, M. K. Makhmudov, A. I. Saidkhodzhaev, B. Tashkhodzhaev, V. M. Malikov, and M. R. Yagudaev, Khim. Prir. Soedin., 42 (1990).
- 70. B. M. Fraga, M. G. Hernandez, and J. G. Diaz, Phytochemistry, 28, 1649 (1989).
- 71. D. F. Weimer and D. C. Ailes, J. Org. Chem., 46, No. 26, 5499 (1981).
- 72. R. S. Dhillon, V. K. Gautam, P. S. Kalsi, and B. R. Chhabra, Phytochemistry, 28, 639 (1989).